समस्या दर्ज करें...
फाइनाइट मैथ उदाहरण
चरण 1
चरण 1.1
समीकरण के दोनों पक्षों से घटाएं.
चरण 1.2
बाईं ओर के घातांक को समाप्त करने के लिए समीकरण के दोनों पक्षों का निर्दिष्ट मूल लें I
चरण 1.3
को सरल करें.
चरण 1.3.1
को के रूप में फिर से लिखें.
चरण 1.3.2
चूंकि दोनों पद पूर्ण वर्ग हैं, इसलिए वर्ग सूत्र के अंतर का उपयोग करके गुणनखंड निकालें जहां और .
चरण 1.4
पूर्ण हल के धनात्मक और ऋणात्मक दोनों भागों का परिणाम है.
चरण 1.4.1
सबसे पहले, पहला समाधान पता करने के लिए के धनात्मक मान का उपयोग करें.
चरण 1.4.2
इसके बाद, दूसरा हल ज्ञात करने के लिए के ऋणात्मक मान का उपयोग करें.
चरण 1.4.3
पूर्ण हल के धनात्मक और ऋणात्मक दोनों भागों का परिणाम है.
चरण 2
एक रेखीय समीकरण ऋजु रेखा का एक समीकरण है, जिसका अर्थ है कि एक रेखीय समीकरण की डिग्री इसके प्रत्येक चर के लिए या होनी चाहिए. इस मामले में, समीकरण में चर की डिग्री रैखिक समीकरण की परिभाषा का उल्लंघन करती है, जिसका अर्थ है कि समीकरण एक रेखीय समीकरण नहीं है.
रैखिक नहीं